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The interplay between localization and nonlinearity is investigated for a modified Swift-Hohenberg
equation. We introduced a spatially stochastic contribution 7&(x) in the control parameter that mimics,
for instance, the essential effects of irregularities at the top and bottom plate in Rayleigh-Bénard-
convection experiments. Near the threshold where the trivial solution ¥ =0 becomes unstable, this ran-
domness leads to localized solutions. Furthermore, the threshold value of the spatially averaged control
parameter is reduced by the disorder n&(x). The interaction between localization and nonlinearity leads
to a characteristic change of the nonlinear bifurcation behavior. When ramping the control parameter
in time, the disorder leads to an earlier onset and to a less steep temporal evolution of the pattern. This
static and dynamic nonlinear behavior has similarities with recent measurements on Rayleigh-Bénard

convection.

PACS number(s): 47.20.Ky, 71.55.—1i

In the past decades there has been enormous progress
in identifying the essential role that nonlinearity plays in
physical systems [1]. During the same period, similar
progress occurred in understanding linear effects of disor-
der in solid-state [2,3] or in classical waves [4,5].
Significantly, these two developments have occurred rath-
er independently, whereas in real systems both coexist
presumably often. Nonlinear properties play an essential
role in pattern-forming systems such as Rayleigh-Bénard
(thermal) convection, Taylor-Couette flow, and electro-
convection in nematic liquid crystals or solidification
fronts [1]. Here we investigate the influence of frozen
disorder in the control parameter of a modified Swift-
Hohenberg (SH) equation [6]. We find a reduction of the
threshold for pattern formation, localized solutions, and
a general signature of the interaction between localization
and the nonlinearity.

The container boundaries of the mentioned pattern-
forming systems usually have a finite roughness. Often
this is small compared to the container extensions and
the related effects are beyond the experimental resolution.
For such situations the usual assumption of ideal flat con-
tainer boundaries is a good approximation. However, re-
cent experiments are designed with smaller container ex-
tensions and the detection sensitivity is also under con-
tinuous improvement. Both tendencies make it more
likely that in experiments roughness effects possibly arise,
which will be puzzling within an analysis based on ideal
flat container boundaries. It is therefore important to
know the container dimensions and parameter ranges
where the typical roughness effects occur. Thermal con-
vection, for instance, plays an important role for many
processes in geophysics and meteorology and several of
them are investigated in the laboratory, however, with
the fluids or gases in containers having rather (ideal) flat
boundaries. To extrapolate back to the outdoor systems
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without well-defined boundaries, it is important to know
about the robustness of phenomena under laboratory
conditions against irregularities. In hydrodynamic sys-
tems with rough container boundaries or macroscopic
porosity [7] new disorder phenomena may arise.

Motivated by that we analyze in a first step a simple
pattern-forming system with a random contribution in
the control parameter, a modified version of the Swift-
Hohenberg equation. The SH equation in its original ver-
sion [6] approximates Rayleigh-Bénard convection for
large Prandtl numbers reasonably near the onset of con-
vection rolls. In a dimensionless version the modified SH
equation is

u={e+n&(x)—(14+32)}u —u+of(x,1) (1)

which has in physical units of Rayleigh-Bénard convec-
tion the form
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with x =g.x’, t=E&q2/(4r)t", u=\ 4h/(ElqP)u’,
o=4/(E3q2)0’, e=€'4/E3q2, and n=n'4/E%q2. The con-
stants 73=0.0552, &,/d =0.3848 are the characteristic
time and length scales, g.d =3.116 is the critical wave
number, and A =0.699 is the coefficient of the nonlinear
term. The values of the constants are taken from [8,9]
where they are given for n=0. € measures the distance
from the bifurcation point and x is in the Rayleigh-
Bénard system the spatial coordinate across the convec-
tion rolls. €’ is the reduced Rayleigh number

,_ R—R, 3)
€= R,
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The Rayleigh number R itself [8],
agATd?
g=Poxaid

KV

) 4)

characterizes the external stress in Rayleigh-Bénard con-
vection, wherein pj is the mass density, a the thermal ex-
pansion coefficient of the respective fluid, g the gravita-
tion constant, d the thickness of the fluid layer, xk the
thermal diffusivity, v the kinematic viscosity, and AT the
temperature difference between the upper and bottom
plates. In the Rayleigh-Bénard cell the convection starts
when the temperature difference becomes larger than a
critical value AT,. This defines due to Eq. (3) the critical
Rayleigh number R, =1704, which is a universal number
independent of the used fluid and the layer thickness.

The random contribution 1n&(x) introduced in the SH
equation may be considered as an ad hoc generalization.
In the context of Rayleigh-Bénard convection the ran-
domness mimics main effects of irregularities in the
confining top and bottom container boundary also caus-
ing fluctuations in the thickness of the fluid layer d. Tak-
ing d, as the mean value we choose for the fluctuating
thickness the following expression:

(5)

d=d, 1+13Lg(x)

With the definition R, =R (d =d,) it is easy to see from
Eq. (4) how the thickness fluctuations transform into a
random component of the Rayleigh number R. The con-
trol parameter in the rescaled equation (1) has then the
explicit form: e+n&(x).

Since we do not know the detailed form of the irregu-
larities at the confining boundaries we choose £(x) as an
exponentially correlated Ornstein-Uhlenbeck process in
space [9] with vanishing spatial mean value and the
correlation length I:

(E(x))=0, (&x)E&x"))=exp(—|x—x"|/I). (6)

Throughout this work we take ] =m=A_/2, where A, is
the second length scale determined by the convection roll
diameter at the critical Rayleigh number R, [8]. Addi-
tionally we investigate Eq. (1) for a finite, experimentally
reasonable length L =20A,. In this case large and for
many pattern-forming systems unphysical fluctuations
[7&(x)~d,] have a small weight and the ensemble and
spatial average ({|n&;(x)|))/d, can be restricted to
small values. A typical realization of the stochastic pro-
cess £(x) is shown in Fig. 1(a). The forcing term f (x,t) in
Eq. (1) is supposed to mimic thermal fluctuations and we
choose it as an uncorrelated Gaussian random field,
which satisfies

(f(x,t))=0,

(7
(fO,)f (x",t"))=8(x —x"")8(t —t") .

We solve Eq. (1) numerically for periodic boundary con-
ditions: % (0)=u(L). The numerical treatment of sto-
chastic partial differential equations is found in [10]. The
discretized version of the full SH equation is solved via
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FIG. 1. In (a) we show a typical realization of £(x) and in
(b)—(d) the eigensolutions to the respective largest eigenvalues of
the linear part of the SH equation (1) for different values of the
perturbation strength 5. (b) 7=0.0, (c) n=0.005, (d) n=0.01,
and (e) n=0.015.

standard implicit-difference schemes (Cranck-Nicholson)
and for calculating stationary solutions without additive
noise (0 =0) Newton schemes are used.

The convective heat current is the measurable quantity
which can be compared after rescaling with the dimen-
sionless convective heat current [11,12]

=1 rt 2
J=1 [ daxlux0], (8)

where u (x) is a solution of the SH equation (1).

At first we discuss the effects of n&(x) on the linear
part of Eq. (1) and we neglect the cubic term as well as
thermal fluctuations (0 =0). The trivial solution u =0
loses its stability without disorder (n=0) at positive
values of € > €, =0. With disorder (970) the control pa-
rameter €+7£(x) becomes in some regions earlier over-
critical and the trivial solution # =0 loses its stability al-
ready at slightly negative values of €. The actual values
of €, <0 depend on the system length L and the correla-
tion length / as well as on the realization of the stochastic
process £(x). We evaluate the ensemble average of the
critical value €,(n)={e,(1,i)) over 600 realizations of
the stochastic process £(x) for different values of 77. As a
result we obtained the power law €.(n)~ —n% a=1.46.
Analytically we find for the uncorrelated disorder (I =0)
€. < —n** and for a finite correlation length / a more
complex transcendental expression for €., interpolating
between €, < —n*/3 for 1 <<1 and the simple linear shift
of €, < —mn for I>>1 [13]. (Recently Pomeau received
qualitatively similar results by a different analysis of the
linear part of our model in Eq. (1) [14].)
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At n=0 the eigenfunctions of the linear part
e+n&(x)—(1432)? of Eq. (1) are simple harmonic func-
tions such as sin(gx) or cos(gx) while its spatial depen-
dence becomes for increasing values of  more and more
localized in those regions where € +71&(x) takes its largest
values. For a typical realization of £(x) shown in Fig.
1(a) and for four different values of n we have plotted in
Figs. 1(b)-1(e) the eigenfunctions of the linear operator
in Eq. (1) corresponding to the largest eigenvalue. The
eigenfunctions with the next largest eigenvalues show a
similar localization behavior, but their “pulses” are locat-
ed in different parts of the interval (0,L) as shown in Fig.
2 for =0.02 and the same random process as in Fig.
1(a). For very small and large values of the correlation
length / the localization of the eigenfunctions becomes
weaker, because the randomness averages out on the
scale of one period for small / and at very large values for
I very wide regions pass the threshold simultaneously.
The localization behavior has similarities with the Ander-
son localization in solid-state physics [3] and has impor-
tant consequences on the nonlinear bifurcation behavior
discussed below.

In the unperturbed case (7=0) all the eigensolutions
corresponding to different eigenvalues of the linear opera-
tor in Eq. (1) are harmonic functions. The nonlinear in-
teraction between those is competitive and as a conse-
quence the stationary solution of the nonlinear SH equa-
tion is essentially the harmonic function. For n=0 the
cubic nonlinearity leads to the proportionality J ~€. In
the following we explain that for 770 the functional
dependence of J (€) is more complex.

The disorder induced shift of the threshold to
(€.(n,i)) <0 and the localization of the eigenfunctions
lead to a characteristic change of the curve J(€). To
demonstrate this, we generated 30 realizations of the sto-
chastic process £;(x), i =1,...,30, and evaluated the
corresponding critical values of the control parameter
€.(n,i) for different values of 7. Next we calculated the

1 1 L
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FIG. 2. The eigenfunctions corresponding to the largest
three eigenvalues of the linear part of Eq. (1) are shown for the
same £(x) and as given in Fig. 1(a) and for n=0.02. The two
rather similar eigenfunctions in (a) and (b) developed out of the
symmetric cos and the antisymmetric sin of the unperturbed
problem (7=0). In the unperturbed case their eigenvalues are
degenerated, however not in our case. The corresponding
eigenfunction to (c), similar as (b) to (a), exists also.

stationary convective heat current J;(e—e, (%,i)) and
then the expectation value

30
(Je,m)) =L 3 Jle—en,i), 9)
i=1
which we have plotted in Fig. 3. The slope of (J(e,7))
increases now for increasing values of € and converges
finally to the constant slope for =0. For finite values of
7 immediately above the threshold €,(,i), where the first
eigenvalue is already positive, however, the second eigen-
value still negative, J;(e—¢€.(n,i)) is, due to the cubic
nonlinearity, a straight line. When the second eigenvalue
also becomes positive and the overlap between the two
respective eigenfunctions is still small, then the eigen-
functions at finite amplitudes interact only slightly via
the nonlinearity. Thus the second eigenfunction at a
finite amplitude contributes additively to J;(e—e.(7,i))
and increases its slope. With increasing € the eigenvalues
of further eigenfunctions become positive and therefore
the interaction between those is increasing. This finally
leads for [|né&(x)| <<€] to solutions again resembling a
harmonic function. The slope of J;(e—e€.(n,i)) and
therefore also of (J(€,7)) changes just in the range,
where the overlap between the first eigenfunctions in-
creases. That means the influence of the randomness has
its largest effect near the onset of the pattern u (x).

This transition behavior becomes even more pro-
nounced when one considers instead of (J (€,m)) another
often used quantity @=V'(J(¢€,)). At =0 the curva-
ture d?C/de* is negative immediately above threshold,
however, at finite values for 7 this curvature changes its
sign with increasing € in the transition range. The curva-
ture is negative immediately above threshold and at
larger values of € and positive in the transition range.

So far we considered the convective heat current J only
for stationary solutions u (x). In Fig. 4 we show the tem-
poral evolution of (J(e(?)))=L43?2 J(e(t)—e.(n,i))
for the case of a ramped control parameter
€(t)=—0.15+0.002 78t. The different curves corre-
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FIG. 3. For different strengths 7=0.0, 0.05, 0.071, and 0.10
of the random part 7&(x) in the control parameter the averaged
convection heat current {J(€)) as defined in Eq. (9) is shown.
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FIG. 4. The averaged convection heat current {J(€)) is plot-
ted as a function of time in the case of a ramped control param-
eter €(t)=—0.15+0.00278:. The curves correspond to
different values 7=0,0.050,0.071,0.10 and the additive noise
strength was fixed at 0 =10"".

spond to different values of 7=0,0.050,0.071,0.100 and
the additive noise strength was fixed at 0 =10"". These
curves show two remarkable features: the earlier onset of
the convective heat current and its decreasing slope of
J(¢) for increasing values of 7.

Now we give a quantitative estimate about the rela-
tions between the fluctuations in the fluid layer thickness
and the random contribution n&(x). The standard devia-
tion of the stochastic process £(x) is 1 according to Eq.
(6). The values of  used in Figs. 3 and 4 are between 0.1
and 0.05 (n'=0.036 or 0.018) corresponding via Eq. (5) to
the typical fluctuations of the layer thickness of about
1.2% or 0.6%. For comparison an upper limit for the
fluctuations of the layer thickness is 0.5% in the experi-
ments of Meyer, Ahlers, and Cannell [12].

By comparing the curves in Figs. 3 and 4 with the mea-
surements in Ref. [12], we find the following remarkable
similarities. The slope of the fit curve to the measured
stationary convective heat current in Fig. 5 of Ref. [12] is
increasing with €, similar as the slope of the curves in
Fig. 3 at finite values of 1. For a ramped control parame-
ter the onset of J (¢) in the experiment [12] was much ear-
lier than expected from calculations on the SH equation
with additive noise o f(x,¢) [12,15] and the noise strength
o calculated from the Navier-Stokes equations [9,16]. To
obtain an onset time as early as in the experiment, a noise
strength o was necessary, which is two orders of magni-
tude larger than calculated [12,15]. For comparison in
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our calculations at 7=0.071 [=(d —d;)/d;~0.9%] we
also obtained an onset time, which can only be repro-
duced with 7=0.0, when the additive noise strength o is
chosen two orders of magnitude larger than in the case
7=0.071. The slopes of the curves in Fig. 4 for finite
values of 7 as well as the curve of the measured heat
current in the ramping experiments (see, for instance,
Figs. 12 and 13 in Ref. [12]) are less steep during the
transition form J <<1 to its nonlinear saturation value
than for n=0.

In conclusion we have shown in Fig. 3 the conse-
quences of the interaction between localization and non-
linearity and their possible experimental relevance.
Whenever measurements show for instance a deviation
from the expected supercritical bifurcation as in Fig. 3
one must be careful to interpret it as an imperfect bifur-
cation in the classical definition: It may still be a sharp
bifurcation, however, shifted to lower values of the con-
trol parameter as in our case and a consequence of the
roughness at the container boundaries. Figure 4 shows
that the roughness could be the reason for an unexpected
early onset of the heat current in the experiments.
Presumably these effects are even more pronounced in a
two-dimensional SH equation and therefore quantitative-
ly even narrower in the quasi-two-dimensional experi-
mental situation [12].

The shown threshold shifts and the interplay of locali-
zation and nonlinearity is rather general and we expect
that it applies to other systems with spatially distributed
disorder as well. Thereby we think of special physical
systems such as high-temperature superconductors and
convection in porous media [7], as well as of more general
types of bifurcations, such as Hopf, codimension-2, and
subcritical bifurcations. If one derives the SH equation
in consideration of the roughness of the container boun-
daries in a Rayleigh-Bénard experiment more systemati-
cally, then besides the term mé&(x) discussed here, a fur-
ther term proportional to E(x)u2 or local drift terms
g(x)axu occur. These additional terms modify the dis-
cussed effects slightly [13]. However, when such local
drift effects dominate the ones discussed here, as it is
presumably the case in electroconvection experiments,
then very interesting disorder induced dynamical frustra-
tion effects arise [13]. One can easily imagine that similar
disorder terms will influence the stability properties of
the nonlinear solution (e.g., Eckhaus stability), front
propagation, etc., which will be investigated in forthcom-
ing works.

We thank G. Eilenberger, K. H. Fischer, J. Honer-
kamp, H. Miiller-Krumbhaar, and W. Renz for useful
hints.
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